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Abstract. Several authors have proposed criteria for the onset of Bose-Einstein condensa- 
tion in finite systems. Using mathematical techniques developed by Pathria and col- 
laborators, we have systematically examined these various proposals by applying them to an 
ideal Bose gas confined to a cuboidal enclosure under periodic boundary conditions. The 
‘transition points’ thus obtained have been subjected to a comparative study, which 
indicates that the most useful general criterion is the macroscopic one based on the 
maximum of the specific heat C,. 

1. Introduction 

In an infinite system the onset of Bose-Einstein condensation takes place abruptly at a 
well defined temperature To(m). In finite systems, however, the corresponding transi- 
tion is spread over a finite range of temperatures; AT, around To(m); in several cases, 
AT/To(m) = O( [/L<) where T [  = ( V/N)’/3] is the mean interparticle distance while L ,  
is the length of the shortest side of the container. Nevertheless, comparison with the 
experimental situation in superfluid 4He suggests that some sort of a ‘transition 
temperature’ should be defined for finite systems as well (see Eggington 1975). This 
leads to a variety of criteria to mark the ‘onset’ of Bose-Einstein condensation in such 
systems. These criteria, in general, lead to different ‘transition temperatures’ in the 
range AT; of course, in the thermodynamic limit, they all coalesce to the bulk value 
To(a). 

Whereas several authors have suggested criteria for the onset of Bose-Einstein 
condensation in finite systems, no systematic examination and comparison of these 
seems to have been done so far. The importance of making such a study is twofold. 
Firstly, one would like to know which, of the many criteria put forward, are really 
promising and which, if any, should be discarded. Secondly, one may be able to establish 
an ordering of these criteria on the basis of the transition points they give for the onset of 
Bose-Einstein condensation. The results of a theoretical investigation of these ques- 
tions, as applied to a gas of non-interacting bosons, are being reported in this paper. 

To analyse a finite Bose-Einstein system by rigorous analytic means one must 
somehow evaluate the summations-overstates which appear in the various expressions 
pertaining to the system. In the bulk case one resorts to the customary procedure of 
converting these summations into integrations. For a finite system, however, such a 
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procedure can introduce serious inaccuracies, so one must handle the summations- 
over-states rather directly. This can be done by employing the mathematical techniques 
developed recently by Pathria (1972a), by Greenspoon and Pathria (1974) and by 
Chaba and Pathria (1975, 1976). 

Using the grand canonical ensemble we first of all study the rigorous, asymptotic 
behaviour of the various thermodynamic and statistical quantities pertaining to an ideal 
Bose gas confined to an arbitrary, finite, cuboidal enclosure under periodic boundary 
conditions; in particular, we consider the thin-film, the square-channel and the cubic 
geometries. Making use of these results we then examine the criteria proposed by 
various authors for the onset of Bose-Einstein condensation in a finite system. For 
instance, Goble and Trainor (1966) have suggested the use of certain ground-state, and 
excited-states, properties of the system. Greenspoon and Pathria (1973, 1974) have 
introduced the thermogeometric parameters y i ( r ) ,  j = 1, 2, 3, and have observed that 
yi = . r r ( - ~ / A ~ ) ’ / ~  where p is the chemical potential of the system and A, (= h2/ML:) is a 
measure of the discreteness of its energy levels. The parameters y:, therefore, represent 
a ‘reduced’ chemical potential of the system. The term ‘thermogeometric’ reflects the 
dual nature of these parameters, in that they are related to the thermodynamical 
parameter p as well as to the geometric parameters Ai. Subsequently it was shown 
(Greenspoon and Pathria 1975) that the thermogeometric parameters y j ( T )  are more 
directly related to the (scaled) correlation length 6 in the system. This suggested 
considering certain properties of yi(n and y i l ( r )  as other possible criteria. Now, 
thermodynamic quantities, such as the specific heat C,, have been used previously by 
Goble and Trainor (1966) and by Greenspoon and Pathria (1974). Moreover, London 
(1938), Osborne (1949), Ziman (1953) and Krueger (1968) have also proposed certain 
criteria, the details of which need not be discussed at this point. We have scrutinized all 
these criteria to determine their relative merits and demerits. In addition, we have made 
some observations on the relative ordering of the various criteria investigated. 

Three basic types of criteria appear in this study: (i) macroscopic ones; (ii) micro- 
scopic ones; and (iii) hybrid ones. Criteria based on the ground-state properties of the 
system are regarded to be of type (iii) because, when we are dealing with the 
condensate, we are considering a microscopic state with a macroscopic occupation 
number; hence, the use of the word ‘hybrid’ in describing criteria of this type. 

2. Formulation of the problem 

We consider a Bose-Einstein system of N non-interacting particles confined to a finite, 
cuboidal geometry ( L ,  X L2 X L3) with the single-particle energy levels et .  The mean 
occupation numbers (ni>, in the grand canonical ensemble, are given by 

u-l, (1) 

CY = - p / k T ,  (2) 

(n,> = (ea+st/kT- 

with 

p being the chemical potential of the system. As shown by Pathria (1972a), the 
thermodynamic properties of the system can be expressed in terms of the functions 

Z ,  = C (E,lkT) %,> (s = 0, 1, 2,. . .), 
I 

(3) 
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For instance, the specific heat at constant volume, C,, is given by 

Cv= k(Gz-G:/Go). (6) 

Equation (6) and corresponding formulae for other thermodynamic quantities hold 
irrespective of the dimensionality of the system, the shape and size of the enclosure, and 
the type of boundary conditions imposed on the wavefunctions. The specific influence 
of these factors enters through the explicit form of the functions 2,. 

Using Poisson's summation formula, Greenspoon and Pathria (1974) have carried 
out an asymptotic evaluation of 2, under periodic boundary conditions, with the result 
(valid for L1,2,3 > > A )  

where A (= h(2~ /Mk7 ' ) ' /~>  is the mean thermal wavelength of the particles, g,,(a) are 
the familiar Bose-Einstein functions (see Pathria 1972b) while the function S l ( y j )  is 
defined by 

-ZR(q)  

( n  =0, *l, *2,. . .), 
(8) 

( j  = 1 ,2 ,3 ) .  (9) 

2 2 112 R(q)  = ( d Y :  +4::Y:: +43Y 3) 
l e  

S ~ ( Y , )  = Fpm Rn(q) 3 

q1.2.3- 

where 
1/2 1 /2  

Y ,  =r a (LjlA) 
It will be noted that the primed summation in (8) implies that the term with q1 = 42 = 
q3 = 0 is excluded. From Z,, one readily obtains asymptotic expressions for other 
relevant functions, such as G,, G:, etc. 

Now, for a given geometry, special events associated with the phenomenon of 
Bose-Einstein condensation take place at distinct, characteristic values of the ther- 
mogeometric parameters yi,  which depend only on the shape of the system and not on its 
actual size. Greenspoon and Pathria (1974) have considered two such events, namely 
the maximum in the specific heat Cv of the system and the minimum in the second 
temperature derivative of the chemical potential F. The characteristic equations 
locating these macroscopic events turn out to be 

and 

2S-2( 1 + So) - 3Sp1( 1 + so + 2s-1) = 0, (11) 
respectively. The resulting values of y ,  (the smallest of the y , )  for three leading 
geometries, along with the values corresponding to T = To(o0), are displayed in the top 
three rows of table 1. These values can be converted into the corresponding characteris- 
tic temperatures T with the help of the asymptotic relationship 
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3. Other macroscopic criteria 

Greenspoon and Pathria (1975) have pointed out a straightforward relation between 
the thermogeometric parameters yj and the bulk correlation length 5:  

Yl = &/o. (13) 

This suggests that y;', which is directly proportional to 6, might be of a more direct 
significance than yj itself. In the light of this we have studied the temperature 
dependence of both yj and yr',  in the hope of evolving another possible criterion for the 
onset of Bose-Einstein condensation in a finite system. For this, we decided to look at: 
(i) the point of inflection, which also leads to the intercept of the tangent at the point of 
inflection; and (ii) the maximum of the curvature of yj and y;' as functions of 
temperature. For (ii), we found it preferable to employ the scaled temperature variables 
(Barber and Fisher 1973) 

2, = (L , /?) ( f -  1) (i = 1,273) (14) 

instead off itself, where f = T/T0(co). Following the procedure of § 2, the characteris- 
tic equations for (i) and (ii) turned out to be 

s-1= 0 

(1 +So)[( 1 + SO)S-2 - 3S?J + a2S-2 = 0 

for yj, and 

l+So-S-1=0 (16a) 

(166) 
( 1 + So)[ 2S12( 1 + So) - 3 S? 1 - 3 ( 1 + So - S- I)'] + ( U  '/ y %) (3 + 3 So - 6s- 1 + 2s-2) = 0 

for yY1; here, 

a = $(5(g))2'3 3 1,4226. (17) 

We find that (15a) has no solutions such that y, = O(1); (16a) has a solution only for a 
c:bic geometry (see row four of ta;ble l), the corresponding characteristic temperature 
T being greater than unity. The T intercept of the tangent at the point of inflection is 
also greater than one; the y value corresponding to this intercept is given in row five of 
table 1. Equations (156) and (16b) have also been solved for the three geometries 
considered here and the resulting y <  values are displayed in rows six and seven, 
respectively, of table 1. 

According to Ziman (1953) and Goble and Trainor (19661, the finite analogue TL of 
London's (1938) bulk transition temperature T0(co) may be obtained by setting the 
chemical potential k, which appears in the expression for the number of particles, 
Ne&, T),  in all the excited states of the system, equal to the ground-state energy eo 
and equating the resulting expression to the total number N. Strictly speaking, p = e o  
only at T = 0, at which point it is No, rather than Ne,,, which is equal to N. This 
procedure leads to a finite T, simply because one generally employs an approximate 
expression for the function Ne,&, T). Clearly, this cannot provide a proper criterion 
for the onset of superfluidity in a finite system. 
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4. Hybrid and microscopic criteria 

The singular behaviour of the condensate fraction f( = No/N) in an infinite system is 
well known: 

In a finite system, however, f(?) varies smoothly with ? (see figure 1). Goble and 
Trainor (1966) have suggested two possible criteria based on the behaviour of the 
function f(?): (i) the ?intercept of the tangent at the point of inflection off(?); and (ii) 
the point of maximum curvature off(?). 

We obtain, for the point of inflection of the condensate fraction f(fi, the charac- 
teristic equation 

3So-2S-1+3=0. (19) 
We find that this equation has no solution for the cubic geometry such that yIp = 0(1), so 
we consider instead the possibility that y I P c  1. Assuming yIp to be O(N”), we obtain, 
after a rather lengthy calculation, 

1 1 ( - 5 s n  <-w) C’ 

where (Zucker 1975, Zasada and Pathria 1976) 

( n  =-A) 

The point of inflection is therefore given by 

(22) Y I P =  (7r5/6D45(5)) 3 1/6 (A/L)’l6 = O(Rr’/18) 

and, correspondingly, fIp = O(N-’/~). The corresponding temperature fIP turns out to 
be 

fp t 1 - (16D4/9~~)’/~(f(~))-~/~hr~/~, (23) 
which is less than one. 

Similar analysis for the Xhin-film and square-channel geometries shows that there is 
no inflection point for f(7‘) within the foregoing range of y</ This means that the 
inflection point for these geometries, if it exists, lies so close to T = 0 that the condition 
(A/L,)<< 1 is no longer satisfied and hence our mathematical formulation becomes 
inapplicable. 

Going back to the cubicgeometry, we obtain for the ?intercept of the tangent at the 
point of inflection (see figure 1) 

fIm= 1 +3(16D,/97r2)2/3(5(~))-”9hr4/9, (24) 
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Figure 1. Schematic diagram showing the condensate fraction f as a function of f, for fixed 
N and L,. Dotted curve, infinite system; full curve, finite cubic geometry under periodic 
boundary conditions. 

which agrees with the behaviour shown by the actual condensate fraction curves 
obtained numerically by Zasada and Pathria (1976). 

We now look at the point of maximum curvature in the f (8 curve. After a lengthy 
calculation we arrive at the characteristic equation for this point, namely 

(1 + SO)[(l+ sO)(s-Z-~s-l)-3(1 +so-s-1)2] 

+(9.r’/16~:N~)(L</~)~(15+ 15so- 18S-1+4S-Z)= 0. (25) 
For the cubic geometry the solution is y = 1.962; again, for the thin-film and square- 
channel geometries there are no solutions such that y ,  = O(1). These results are shown 
in row eight of table 1. 

Krueger (1968) proposed the requirement that 

NOIN1 = 1 + y (26) 
where y = O(1); Krueger himself worked with y = 1. Equation (26) implies that 

a! = o ( R ~ * / ~ )  (27) 

( Y , ) ~  = T L ~ / Y ‘ / ~ L ,  = o(1); 
and hence 

(28) 
here, L ,  is the length of the largest side of the container. From (28) it follows that 
Krueger’s criterion can be applied only to a completely finite geometry, such as a cube 
(see row nine of table 1). 

Another criterion, a microscopic one, considered by Landsberg (1954) and by 
Goble and Trainor (1966), is based on the behaviour of the mean occupation number 
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N1 of the first excited state of the system. Since, for an unambiguous definition of the 
first excited state, the system must be finite in all of its dimensions, we may restrict 
ourselves to a cubic geometry here. The state in question is then sixfold degenerate and 
has an energy = ft2/2ML2. The criterion now consists in locating the temperature at 
which the occupancy of the energy level passes through a maximum. This leads to the 
condition 

G1/Go = T ( A / L ) ~ .  (29) 
We find that this equation has no solutions such that y = O( 1).  However, if we consider 
y << 1, we do find a solution (see row ten of table l),  namely 

(30) 

and, correspondingly, f = O(Rr’/6). The corresponding characteristic temperature is 
given by 

3 1/4 Y ( ( N J m a x )  = c 2 ~ ~ / 3 m I  (A/L)’’~ = 0(1v-l’l2) 

f((N1)max) 2: 1 - (2/3~)”’(~(~))~1’3N-’’6, (31) 
which is again less than one. It is readily seen that if we considered an excited state other 
than the first we would obtain essentially the same results as in (30) and (31), only with 
somewhat different numerical factors. 

Finally, we note that Osborne (1949) introduced the concept of an accumulation 
temperature T, as the temperature at which a finite fraction of particles begins to 
accumulate in a single state (or set of states with the same energy). By a finite fraction 
Osborne meant ‘less than, but not a great deal less than, unity or very much greater than 
l /W. At this temperature one would have 

(32) ( y j )os  = (?r/rN)1/2(Lj/A) = O(N-’/6); 
here, r is a fraction of order 1. The foregoing result is included in row eleven of table 1. 

5. Conclusions 

We are now in a position to comment on the relative merits and demerits of the different 
criteria investigated. The most suitable criteria would be those which: (i) are applicable 
to all geometries; and (ii) give ‘transition points’ within a specific range of y ,  for all 
geometries. For instance, condition (i) eliminates the criterion proposed by Krueger 
while condition (ii) eliminates the curvature maximum of the condensate fractionf. The 
criteria which survive this screening process are: ( a )  the point at which the specific heat 
is a maximum; ( b )  the point at which the second temperature derivative of the chemical 
potential is a minimum; and (c) the points corresponding to the maximum curvature of 
y j  and y;’.  However, the latter were derived with the help of the scaling variables zi. It 
will be noted that the use of slightly different scaling variables, say z j  = 2zj, would still 
give transition points such that y ,  = 0(1) but numerically they would be different from 
the ones appearing in rows seven and eight of table 1. This arbitrariness makes the use 
of these points unsuitable as a possible criterion. Another survivor of the screening 
process is Osborne’s proposal of an accumulation temperature T,. However, due to the 
arbitrariness associated with the unspecified value of r in equation (32), this leads to a 
broad range of y ,  values rather than a definite point. 

Of the criteria (a )  and (b) ,  the second one does not correspond to a directly 
observable physical event. Consequently, the most useful general criterion for the 
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onset of Bose-Einstein condensation in finite systems seems to be the macroscopic one 
based on the specific-heat maximum. 

Our results for the ‘transition point’ fall into two distinct categories: y, = 0(1) a_nd 
y< = O(N”), with -is n < 0 (see table 1). Since y <  is a monotonic function of T, a 
perusal of these results gives us a fairly good idea of the relative ordering of the various 
‘transition points’ that emerged in this study. However, the pattern varies somewhat 
from one geometry to another. Moreover, one wonders how the various results would 
be affected if one chose boundary conditions other than periodic. 
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